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Abstract: Forest carbon sink efficiency refers to the efficiency of input-output indicators related to 
carbon sinks. This paper studies carbon sink efficiency from the perspective of resource allocation; 
guides the optimal allocation of resources; and selects forestry employees, forestry investment 
amount and afforestation area as input indicators; the forest carbon sink efficiency in China is cal-
culated and analyzed based on a data envelopment analysis model by converting the forest volume 
into the forest carbon sink through the volume expansion factor method. The grey prediction model 
is used to estimate the change in the input indicator, and the production possibility set is constructed 
with the input indicator before and after the change and the current output indicator. The efficiency 
of the decision units before the change is calculated, and through the comparison of efficiency, the 
conditions of forest carbon sink increase in 15 provinces are obtained. The optimal allocation of the 
output indicator is calculated based on the inverse data envelopment analysis model. The largest 
increase in forestry carbon sink is 169,362 megatons in Guangdong, and the smallest is 619 megatons 
in Tianjin. Finally, some suggestions for the path of forest carbon sink increment are put forward. 
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1. Introduction 
Forests are the largest pools of carbon in terrestrial ecosystems. In recent years, the 

relationship between forests and sustainable development has taken on new develop-
ments, although conservation and utilization have always been important topics in forest 
management [1,2]. Xi Jinping, the president of the People’s Republic of China proposed 
the carbon peaking and carbon neutrality goals on 22 September 2020. Expanding forest 
cover and increasing forest productivity are important measures for many countries and 
international organizations to address climate change in the next 30–50 years , and they 
are the most powerful measures for China to achieve its carbon peaking and carbon neu-
trality goals [3]. Forests are important vehicles for achieving China’s dual ecological and 
economic goals and an important way to realize the value of ecological products [4]. Stud-
ying the incremental forest carbon sink from the perspective of efficiency can realize the 
optimal allocation of resources for the development of forest carbon sink, which is of great 
significance for the sustainable realization of forest ecological value. 

Forest resource management is the efficient integration and resource allocation of 
forest resources, which aims to improve forestry production efficiency [5]. In existing 
studies, efficiency measures are mainly based on stochastic frontier approach (SFA) [6,7] 
and data envelopment analysis (DEA) [8–11]. Due to its nonparametric nature and effi-
ciency decomposability, DEA is widely used in efficiency measurement. Based on DEA, 
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scholars have studied the input–output efficiency of forestry from both spatial and tem-
poral perspectives. Yang et al. [12] used a super-efficient DEA model to conduct a static 
spatial study of regional forestry input–output efficiency from the perspective of inte-
grated efficiency and used the Malmquist indicator to analyze the developments in re-
gional forestry in dynamic time from total factor productivity change, technical progress 
change and technical efficiency change . He et al. [13] applied dynamic network DEA to 
the evaluation of forest park tourism efficiency and studied the resource utilization degree 
of forest parks by constructing a two-stage dynamic network DEA model . Xie et al. [14] 
used the super-efficient DEA model and the Malmquist indicator to study the regional 
and time-series differences in the efficiency of the forestry industry in China and used 
two-stage least squares to study the diffusion effect of the forestry industry . Zhang et al. 
[15] combined life cycle assessment (LCA) and time-series DEA to explore the ecological 
efficiency of complex forestry enterprises with the goal of carbon peaking and carbon neu-
tralization. With the gradual attention of scholars to forest carbon sink research, forest 
carbon sink efficiency research has also become a population direction . Yao et al. [16] 
constructed a forest carbon sink efficiency indicator system based on western economic 
theory and used a BCC model (belongs to DEA) and Malmquist indicator to statically 
evaluate and dynamically analyze the forest carbon sink efficiency of 29 provinces (cities 
and districts) in China from 1999 to 2018, providing development ideas for Chinese for-
estry to achieve the dual goals of economy and ecology . Wang et al. [17] used weighted 
location entropy and Herfindahl reciprocal to measure forestry industry agglomeration 
and used DEA and the Malquist index DEA and the Malmquist index to measure for-
estry total factor productivity, and studied the impact of two forestry agglomerations on 
forestry total factor productivity. Ao et al. [18] used three-stage DEA to remove the influ-
ence of environmental factor and correct the carbon sink efficiency and further analyzed 
the influence of household factors, government subsidies, fertilizer application, and forest 
structure on the carbon sink efficiency . Luo et al. [4] used DEA to analyze the economic 
efficiency of carbon sinks in China’s provinces from the perspective of carbon sink inputs 
and outputs and explored the regional coordination of the economic efficiency of forestry 
carbon sinks in each region by constructing a development matrix of forestry carbon sink 
types; Long et al. [19] considered the super-efficient SBM model with non-expected out-
puts to measure low carbon efficiency and study the spatial differences in low carbon 
efficiency among regions . Yin et al. [20] used the Malmquist indicator method to evaluate 
the technical efficiency, allocative efficiency, and profit efficiency of forestry carbon se-
questration technology and analyzed the influencing factors and spatial spillover effects 
of carbon sequestration efficiency using the spatial Durbin model . At present, scholars 
are more concerned with the efficiency evaluation of forest carbon sinks, and there is little 
research on how to further consider the optimal allocation of incremental forest carbon 
sinks on the basis of efficiency evaluation. 

Some scholars have proposed an inverse DEA model that mainly addresses the situ-
ation of input–output interaction with constant efficiency [21]. The addition of preference 
cone constraints in the extension of this model enables decision makers to incorporate 
their preferences or important policies into the production analysis and resource alloca-
tion process, which is beneficial in guiding decision makers in resource allocation [22]. 
Sewanee et al. [23] proposed an inverse model of the BCC model that can retain all the 
production possibilities in the set consisting of current decision-making units (DMUs) and 
DMUs with new input–output values for the relative efficiency of DMUs and simultane-
ously consider the increase in some outputs and the decrease in other outputs of the eval-
uated DMUs . Sayar et al. [24] considered the variability of input and output levels and 
constructed a reverse DEA model of income and budget constraints on the basis of the 
traditional reverse DEA model to meet the income and budget constraints . Inverse DEA 
has now been widely used in forecasting from the perspective of efficiency and resource 
allocation. For example, it has applied in the fields of education [25], energy conservation 
[26], resource allocation in a low-carbon economy [27], and the petroleum industry [28]. 
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According to the existing forestry carbon sink methodology, the carbon sink entering 
to the market transaction mainly refers to the increment of carbon sink, and it is important 
to study the increment of forest carbon sink to promote forestry carbon sink transactions 
and realize the value of ecological products. On the basis of efficiency evaluation, the 
study of carbon sink increment can achieve better resource optimization allocation. The 
research on the increment of forest carbon sink under the perspective of efficiency evalu-
ation currently has two main problems: (1) What are the prerequisites for the increment 
of forest carbon sink from the perspective of efficiency? (2) What does the quantitative 
analysis of incremental forest carbon sinks entail from the perspective of efficiency? This 
paper selects an indicator system based on relevant literature, analyzes the efficiency of 
existing indicator data based on DEA, measures the changes in labor and capital input 
indicators using a gray prediction model, uses the recent average to represent the changes 
in land indicators, constructs the production possibility set before and after the changes 
of input indicators, compares the efficiency before and after the changes in the possibility 
set, and illustrates the forest carbon sink through the efficiency changes. The prerequisites 
for the increase in forest carbon sink are explained by the change in efficiency. Then, the 
optimal carbon sink increment is measured based on the inverse DEA model for the area 
of carbon sink increment. Finally, the conclusions of the empirical study are used to give 
policy recommendations on the path of incremental forest carbon sinks in China. 

2. Research Methods 
2.1. Data Envelopment Analysis 

Data envelopment analysis (DEA) was first proposed in 1978 by Charnes et al.[29] a 
leading American operations researcher, as a method that provides evaluation results 
through linear programming in a set of comparable decision-making units (DMU) that 
can identify those units that demonstrate best practices and will form an effective frontier 
. In addition, the method enables one to measure the level of efficiency of non-frontier 
units and to identify benchmarks against which such inefficient units can be compared. 

Suppose there are n n   decision-making units, each of which has m  m inputs, 

1 2( , , , )Tj j j mjX X X X   and r r   outputs, 1 2( , , , )Tj j j rjY Y Y Y  . Then, it is as-
sumed that the output CCR model with constant returns to scale is: 
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The inverse DEA problem considers how much the output of this DMU can increase 
if the input of the DMU is increased under the as assumption that the current level of 
efficiency remains unchanged, and how much the input should increase if the output in-
crease is given? On the premise of maintaining the efficiency of dDMU  DMUd, the de-

cision unit after changing its input or output is denoted as *
dDMU . For all current DMUs, 

use ' ' '
1 2, , , n    denotes the value of its optimal relative efficiency. The input increment 

is denoted as 1 2( , , , )d d d mdX X X X     , the changed input is denoted as 

d d dX X    , and the changed output is denoted as d d dY Y    . 
The above output inverse DEA model based on constant efficiency can be expressed 

as 
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where TW  is the weight assignment of s outputs. 

2.2. Grey Prediction Model 
Because of the change in forestry indicator accounting items and the lack of original 

data in China, the grey prediction model is used to forecast. By identifying the degree of 
similarity between the development trends in system factors (conducting correlation anal-
ysis) and processing raw data to find the laws of system changes, we can generate data 
series with strong regularity. Then, the corresponding differential equation model is es-
tablished to predict the future development trends. 

Construct a GM (1,1) gray prediction model. 
1. The original sequence is constructed separately by each indicator: 

0 0 0(0) ( (1), (2), , ( ))nx x xX    (3) 

2. Perform an accumulation of the established original sequence to generate the cumu-
lative sequence: 

1 1 1(1) ( (1), (2), , ( ))nx x xX    (4)

3. Then the weighted adjacent value is generated for the accumulated generating se-
quence (1)X : 

0 0(1)( ) ( ( ) (1 ) ( 1)), 2, .k k k k nx xz        (5)

4. Define the grey differential equation as: 
10( ) ( )k aZ k bX    (6)

where a is the development coefficient and b is the grey action quantity. 
5. Construct the whitening equation: 

1
1dX aX b

dt
   (7)

6. The solution equation of the corresponding function is thereby: 

1ˆ ( 1) ( (0) ) , 1, 2, , 1akb bX k X e k n
a a

       (8)

3. Data Sources and Indicator Selection 
3.1. Data Sources 

The indicator data are from the China Statistical Yearbook, the China Forestry Statis-
tical Yearbook, and the Statistical Yearbook of the National Bureau of Statistics of China. 
Some missing data were completed by interpolation and linear regression. 

3.2. Selection of Input-Output Indicators 
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The purpose of this paper is to analyze the comprehensive evaluation indicators of 
forest carbon sink efficiency in China, so the construction of a scientific and rigorous eval-
uation indicator system is the basis and the key task of the study. Based on the connotation 
of forest carbon sink, previous researchers have investigated the conciseness, operability, 
and quantifiability of forest carbon sink indicators [18,30–33]. The actual evaluation indi-
cator systems of forest carbon sink efficiency in China are constructed from the perspec-
tives of labor, capital, and land factors, as shown in Table 1. 

Table 1. Evaluation indicator system of forest carbon sinks development efficiency in China. 

System The Subsystem Indicators Unit 

Labor input 
number of forestry system 

employees at the end of 
the year 

Number of state-owned economic units People 

  Number of collective economic units People 
  Number of other economic units People 

Capital Investment Forestry investment com-
pletion Ecological restoration and improvement million yuan 

  Forest products processing and manufactur-
ing million yuan 

  Forestry services, security and public man-
agement million yuan 

  Forestry Industry Development million yuan 
Land input Afforestation area Artificial forestation hectares 

Fly-sown afforesta-
tion  Mountain Closure Forestry hectares 

  Fly-sown afforestation  
  Degraded forest restoration hectares 
  Manual updates hectares 

Outputs Forest carbon sink Forest carbon sink Millions of tons 

The labor input is the year-end number of selected forestry practitioners. The number 
of employees refers to the number of employees at all levels and units in China. This in-
dicator can reflect the labor force invested in China’s forestry development. The number 
of state-owned economic units refers to the number of employees in units whose means 
of production are owned by the state; the number of collective economic units refers to 
the means of production, the number of employees in units means of production, i.e., the 
number of employees in units owned by some members of society; the number of employ-
ees in other economic units is the number of employees in units other than the above two. 
The three types together constitute the number of forestry practitioners, which compre-
hensively reflects the labor input into forestry and the personnel input that can reflect the 
efficiency of forest carbon sinks. 

The capital investment selects the completed amount of forestry investment, which 
is the forestry investment used in ecological construction and protection, forestry support 
and security, and other fields [34]. Among them, ecological restoration and improvement 
aim at restoring polluted environments based on biological restoration under the guid-
ance of ecological principles, combining various physical restoration, chemical restora-
tion, and engineering technical measures. Forest product processing and manufacturing 
refers to using forest products as raw materials for final products. Forestry industry de-
velopment is based on forest resources and uses scientific and technological means to pro-
duce forestry-related products in an organized and large-scale manner. The above consti-
tutes the complete amount of forestry investment, covering all aspects of forestry invest-
ment, and can reflect the capital investment in forest carbon sink efficiency. 
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The land is invested in the selected afforestation area. Forestry projects refer to pro-
cesses, activities, or mechanisms that absorb and fix carbon dioxide in the atmosphere 
through afforestation, reforestation and forest management, vegetation restoration, and 
decreased deforestation and that are combined with carbon sink trading. It is most appro-
priate to choose afforestation area as land input [31]. Artificial forestation refers to sowing, 
planting seedlings, and sub-planting on other suitable forest land such as barren hills and 
wasteland. Fly-sown afforestation is planted by aircraft and supplemented by appropriate 
artificial measures to form forests or shrubs and hawthorns. Mountain closure forestry is 
a encapsulate low-quality and low-efficiency forest land supplemented with artificial pro-
motion methods to form Nailin or improve stand quality. Degraded forest restoration is 
to effectively reduce the degradation of shelter forest, improve stand quality, and restore 
forest function. Manual updates refer to reforesting by afforestation in burnt areas, etc. 
The above comprise all aspects of the afforestation area. 

The out indicator consists of three main components, namely, “forest biomass se-
questration”, “forest understory vegetation sequestration”, and “forest soil sequestra-
tion”, and the specific calculation method is based on the method proposed by Tingting 
Xi et al. [30]. This method uses a biomass conversion factor to calculate the carbon seques-
tration of forest understory vegetation and forest soil and finally calculates the total car-
bon sequestration of the whole forest. 

3.3. Model Construction 
In the study of mathematical economics, it is often necessary to introduce some axi-

oms in order to study the structure of a system. Let the production possibilities set be: 

 ( , ) |  x  outputs ym mT x y inputs E E     (9)

There are some axioms about producing the possible set T (Banker et al., 1984; Yu et 
al., 1996): 
Axiom 1 (Convexity Axiom) 

     ( , ) , ( , ) , 0,1 ,  (x,y)+(1- )( , )If x y T x y T then have x y T        (10)

Axiom 2 (Axiom of Nullity) 

   ( , ) , , , ( , )If x y T x x y y then x y T     (11)

Axiom 3 (Plain Axiom) 

 , , 1, 2, ,j jx y T j n    (12)

Axiom 4 (Conicity Axiom) 

( , ) , 0,  ( , )If x y T then x y T     (13)

According to the indicator system in Section 3.2, 30 provinces in China are selected 
as the decision-making unit (DMUs) (Tibet is not studied for the time being due to the 
serious lack of indicator data, and Hong Kong, Macao, and Taiwan are also not considered 
in this paper), each of which ( 1,2, ,30)jDMU j    has 3 input variables, denoted as 

1 2 3( , , )Tj j j jX X X X , where labor input 1 11 1( , , )jX X X  , capital input

2 21 2( , , )jX X X  ， land input 3 31 3( , , )jX X X  , then jX  constitutes a 3×30 

3×30 matrix 

11 12 13

21 22 23

30 1 30 2 30 3

TX X X
X X X

X X X

 
 
 
 
 
 

  
; 1 output variable, forest carbon sink, denoted as 
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1( )Tj jY Y , and jY is a 1×30 vector 11 12 1( , , , )jY Y Y . The changed input variables are 

denoted as * * * *
1 2 3( , , )Tj j j jX X X X . The efficiency of each of jDMU  is denoted as 

1 2( , , , )j j     , and the new efficiency obtained after the input change is denoted 

as * * * *
1 2( , , , )j j     . 

When axioms 1–4 are satisfied, the above input–output indicators constitute the CCR 
model production possibility set (Chen and Wang, 2021): 

 
1 1

, | ; ; 0; 1,2, ,
n n

C
j j i j j

j j
X Y X X Y Y j nPPS   

 

 
     
 

    (14)

The new set of production possibilities obtained after the input change is expressed 
as: 

 * * *

1 1
, | ; ; 0; 1,2, ,

n n
C j i j jj

j j
X Y Y Y j nPPS X X  

 

 
     
 

    (15)

The set of production possibilities based on the inverse DEA model [16] is denoted 
as: 

 ( , ) | ;N N
d dX Y X YPPS PPS       (16)

Under the production possibility set CPPS , efficiency value ( )j  of each province 
can be obtained through model (2); when the input is adjusted, the production possible 

set of is changed from CPPS  to 
*CPPS  to get the new efficiency  *

j . Combining the 

two efficiency values j  and *
j . If the newly obtained efficiency increases, it means 

that the adjusted input indicators are in a better resource allocation compared with the 
pre-adjustment state. Then, in the inverse DEA model production possibility set NPPS , 
the output indicator should be reduced if we want to keep the efficiency level the same; if 
the efficiency decreases, it means that under the inverse DEA model production possibil-
ity set NPPS , output indicator volume in this resource allocation case will be increased 
as long as the rate is maintained, and so we have the following theorem: 

Theorem 1. Based on the two production possibility sets CPPS  and 
*CPPS , the CCR effi-

ciency of d  and *
d  of the dDMU  is measured according to model (1). If *

d d  , then 

while keeping d  constant, have *( , ) N
d d dX Y Y PPS    where 0dY  ; if *

d d  , 

then while keeping d  unchanged, we have *( , ) N
d d dX Y Y PPS    where 0dY  . 

The model construction steps for the study of forest carbon sink increment are as 
follows. 

Step 1: Apply the grey prediction model to measure the changed input variables *
jX ; 

Step 2: Combine the input variables before the change jX  and the changed input 

variables *
jX  and the output variable jY  Substitute into model (1) and calculate the ef-

ficiency values under the two production possibility sets d  and *
d ; 

Step 3: Compare the two efficiency values d  and *
d  to filter out the provinces 

with reduced efficiency; 
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Step 4: The provinces with reduced efficiency are studied for the increase in their 
carbon sinks using the inverse DEA model; that is, the changes in the incremental carbon 
sinks are explored while keeping their efficiency constant. 

The specific process is shown in Figure 1. 

 
Figure 1. Flow chart of carbon sink inker. 

4. Analysis of Results and Discussion 
4.1. Empirical Results of DEA Model 

The CCR efficiency is measured for 30 provinces (municipalities and autonomous 
regions) in China based on the data from 2017–2019, as shown in Figure 2. It can be seen 
that the provincial forest carbon sink efficiency in China presents a highly unbalanced 
state with large differences and polarization. The national average efficiency values for 
2017–2019 are 0.446, 0.445, and 0.486, with a slight improvement in 2019 compared to the 
previous two years. Only Heilongjiang and Yunnan regions have a combined efficiency 
value of 1. The provinces on the efficiency frontier grew from the first two to four regions. 
We set a relatively high efficiency of ≥0.75, and the overall efficiency distribution of effi-
ciency is shown in Table 2. From the distribution of values, the number of provinces with 
efficiency values in the 0–0.25 segment increased from 10 fewer in 2017 to 8 in 2019, the 
number of provinces in the 0.25–0.5 segment increased from 10 to 11, and the number of 
provinces in the 0.5–0.75 segment increased from 2 to 3. The 0.75–1 subparagraphs remain 
unchanged, and the efficiency has improved somewhat but not significantly in China. 
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Figure 2. Integrated efficiency value of forest carbon sink in China, 2017–204. 

Although forest carbon sinks have the unique characteristics of being relatively stable 
and showing little change, it can be seen from Table 2 that the overall forest carbon sink 
efficiency in China shows a slight upward trend. This may be due to the fact that several 
policies and measures on forest development in China have promoted the growth of car-
bon sinks; for instance, the State Forestry and Grassland Administration put forward the 
Opinions on Further Release of Collective Forest Management Rights in 2018, which is of 
great significance in promoting the implementation of rural revitalization strategy by re-
leasing collective forest management rights and making good use of forestry resources, 
which is conducive to attracting social capital investment in forestry and promoting mod-
erate-scale operation. Organic combinations of farmers and forestry modernization con-
struction have thus introduced high technology into forestry development to improve for-
estry efficiency. Meanwhile, in the “2018 Forestry and Grassland Policies and Actions to 
Address Climate Change”, it is pointed out that all departments adhere to Xi Jinping’s 
thought on ecological civilization as a guide, practice the concept of green water and green 
mountains as the silver mountain of gold, focus on the “13th Five-Year Plan” to control 
greenhouse gas emissions, strive to improve the efficiency of forest carbon sinks, and sol-
idly promote forestry to address the innovative development of climate change. It can be 
seen that the efficiencies of most provinces improved after the relevant policy opinions 
were put forward. 
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Table 2. Distribution of forest carbon sink efficiency in China, 2017–2019. 

Efficiency Value Distribu-
tion Segment 

2017 2018 2019 
Number Percentage Number Percentage Number Percentage 

0–0.25 10 33.33% 12 40.00% 8 26.67% 
0.25–0.5 10 33.33% 8 26.67% 11 36.67% 
0.5–0.75 2 6.67% 1 3.33% 3 10.00% 
0.75–1 8 26.67% 9 30.00% 8 26.67% 

4.2. Input Indicator Volume 
Considering the limited area of forest land in China and the small amount of change 

in land indicators, the average afforestation area from 2017 to 2019 was used as the land 
input indicator for the new production possibility set. To estimate the year-end number 
of forestry employees and forestry investment completion for the new production possi-
bility set, a grey prediction model was used, and the year-end number of forestry employ-
ees was selected from 2000–2019 data as the original data. Since China only accounts for 
the completion of fixed assets before 2010, the completion of forestry investment appeared 
in the forestry statistical yearbook for the first time in 2011, so the completion of forestry 
investment was selected from 2011 to 2019 as the original data. The average post-test dif-
ference ratios of the year-end number of practitioners and estimated forestry investment 
completion results are less than 0.3 and 0.5, respectively, and the test results are good and 
qualified. New production may set 

*CPPS . The input indicators are shown in Table 3. 

Table 3. Estimated input indicators by region in 2030. 

DMU Number of Employees at the End 
of the Year (Number of People) 

Forestry Investment Completion 
(Million Yuan) 

Afforestation Area 
(Hectare) 

Beijing 14,213 2,929,361.5 29,794.0 
Tianjin 525 399,726.9 10,054.3 
Hebei 22,102 4,207,203.8 555,196.0 
Shanxi 22,754 1,200,342.2 306,270.0 

Inner Mongolia 53,670 1,955,766.1 632,972.0 
Liaoning 20,658 85,997.9 151,546.3 

Jilin 59,792 1,343,898.2 144,533.3 
Heilongjiang 184,890 1,340,881.4 95,743.0 

Shanghai 1874 976,126.4 3268.0 
Jiangsu 11,486 658,479.0 36,851.0 

Zhejiang 5265 1,372,514.2 54,448.3 
Anhui 14,093 948,282.2 137,153.7 
Fujian 10,517 1,414,838.8 218,551.0 
Jiangxi 33,126 2,700,544.1 293,370.0 

Shandong 14,038 1,032,556.6 145,453.3 
Henan 25,763 5,345,893.6 167,842.3 
Hubei 17,350 9,499,127.9 325,734.0 
Hunan 34,332 168,168.1 547,230.0 

Guangdong 18,417 9,285,556.5 282,151.3 
Guangxi 29,634 378,863.0 205,740.7 
Hainan 10,384 5,362,297.3 12,632.0 

Chongqing 4972 1,978,886.4 241,462.7 
Sichuan 22,197 4,030,144.3 554,572.7 
Guizhou 18,336 4,360,092.6 501,225.7 
Yunnan 30,317 1,016,097.6 419,468.3 
Shaanxi 30,567 2,562,457.7 326,840.7 
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Gansu 38,917 923,749.1 347,925.3 
Qinghai 29,000 275,192.4 194,375.7 
Ningxia 8780 865,615.1 89,941.3 
Xinjiang 20,663 297,914.3 263,358.3 

4.3. Empirical Results of the Inverse DEA Model 
The forestry industry is characterized by a long development cycle and slow payoff 

of inputs. It can be assumed that the changes in forest carbon sink efficiency are subtle in 
the short term, and inverse DEA studies the incremental problem assuming constant effi-
ciency, which is in line with the development of forestry and can well study the incremen-
tal situation. Based on the production possibility set CPPS  and 

*CPPS , the CCR effi-
ciency values of forest carbon sinks in each province were measured by model (1) d  

and *
d  as shown in Table 4. 

Table 4. CCR efficiency and deviation in 2019 and 2030. 

DMU 2019 2030 Bias 
Beijing 0.132 0.110 −0.022 
Tianjin 0.206 0.149 −0.057 
Hebei 0.181 0.081 −0.100 
Shanxi 0.146 0.094 −0.052 

Inner Mongolia 0.503 0.505 0.002 
Liaoning 0.449 1.000 0.551 

Jilin 0.853 0.902 0.049 
Heilongjiang 1.000 1.000 0.000 

Shanghai 0.258 0.194 −0.064 
Jiangsu 0.338 0.352 0.014 

Zhejiang 0.922 1.000 0.078 
Anhui 0.356 0.351 −0.005 
Fujian 0.851 0.926 0.075 
Jiangxi 0.322 0.353 0.031 

Shandong 0.152 0.167 0.015 
Henan 0.261 0.253 −0.008 
Hubei 0.348 0.290 −0.058 
Hunan 0.254 0.823 0.569 

Guangdong 1.000 0.373 −0.627 
Guangxi 0.506 0.876 0.370 
Hainan 1.000 1.000 0.000 

Chongqing 1.000 0.553 −0.447 
Sichuan 0.899 1.000 0.101 
Guizhou 0.300 0.273 −0.027 
Yunnan 1.000 1.000 0.000 
Shaanxi 0.395 0.290 −0.105 
Gansu 0.185 0.151 −0.034 

Qinghai 0.142 0.083 −0.059 
Ningxia 0.032 0.023 −0.009 
Xinjiang 0.580 0.656 0.076 
Average 0.486 0.389 −0.097 

According to Theorem 1, the provinces in different situations are classified consider-
ing the change in forest carbon sink at 2030. From the perspective of efficiency change, the 
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efficiency is measured separately for two production possibility sets, as shown in Theo-
rem 1. The efficiency change is used as the basis for province classification, and the results 
are shown in Table 4. The provinces with improved efficiency are Inner Mongolia, Liao-
ning, Jilin, Jiangsu, Zhejiang, Fujian, Jiangxi, Shandong, Hunan, Guangxi, Sichuan, and 
Xinjiang, totaling twelve provinces; the provinces with reduced efficiency are Beijing, 
Tianjin, Hebei, Shanxi, Shanghai, Anhui, Henan, Hubei, Guangdong, Chongqing, Gui-
zhou, Shaanxi, Gansu, Qinghai, and Ningxia, totaling fifteen provinces. In this paper, 
based on the inverse DEA model, the incremental carbon sink after the change of inputs 
in the reduced efficiency regions was studied under the perspective of constant efficiency, 
and the measured results are shown in Table 5. 

Since forest carbon sinks are affected by a series of factors such as resources and pol-
icies, China’s vast territory, different natural resources in each province, and different pol-
icies according to local conditions, the development of carbon sinks varies greatly and in 
different directions. Taking Beijing as an example, when the input increment is BeijingX
= (3726, 540,924, −185) in 2030, the theoretical optimal increase in output indicator is ob-
tained as Y  = 8240 under the condition that the comprehensive efficiency of forest car-
bon sink is maintained unchanged. This result shows that in Beijing, increasing the num-
ber of forestry employees by 3726, increasing the amount of forestry investment by CNY 
5409.24 million, and decreasing afforestation area by 158 hectares would result in an in-
crease in the output indicator forest carbon sink of 8240 megatons. 

Table 5. Inverse DEA results for efficiency reduction areas. 

DMU Comprehensive Effi-
ciency 

Δx1 

(Number of People) 
Δx2 

(Million Yuan) 

Δx3 

(Hectare) 

Δy 
(Megaton) 

Beijing 0.132 3726 540,924 −185 8240 
Tianjin 0.206 −138 −48,658 1406 619 
Hebei 0.181 3391 2,775,971 −45,760 17,460 
Shanxi 0.146 553 125,665 −33,878 7270 

Shanghai 0.258 452 735,781 85 5198 
Anhui 0.356 −2225 −108,656 −1339 1490 
Henan 0.261 587 3,367,971 −5754 24,868 
Hubei 0.348 −7647 6,177,305 −4923 28,100 

Guangdong 1.000 −8506 9,156,937 11,689 169,362 
Chongqing 1.000 83 1,213,134 −28,540 28,991 

Guizhou 0.300 −14420 1,370,015 154,550 1060 
Shaanxi 0.395 2130 1,420,887 −21,253 26,193 
Gansu 0.185 4971 −440,522 −44,840 2888 

Qinghai 0.142 20585 −301,019 −11,528 1925 
Ningxia 0.032 1231 570,612 −10,114 746 

For Guangdong and Chongqing, where the overall efficiency is 1, it can be seen that 
in the future, in terms of personnel input, it can be kept constant or reduced appropriately. 
However, it is still necessary to ensure the increase in the amount of input funds, which 
is due to the fact that to maintain the efficiency at the optimal frontier surface, the devel-
opment of science and technology is the most important, and the proportion of science 
and technology investment will increase significantly, so a large amount of funds is 
needed as a backup. Guangdong Province, from 2011 to 2021, increased the area of affor-
estation and forest cover, which shows that based on the geographical advantage of 
Guangdong Province, it still has unexplored forest land and can even continue to increase 
the area of afforestation through measures such as returning farmland to forest. Guang-
dong Province, through economic development and its own geographical advantage, will 
reach the largest increase in carbon sink in the country in 2030. Chongqing, as a mountain 
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city, has a small base of forested area, and due to the demand of economic development, 
the increase in afforestation area has been slowing down or even decreasing in the past 
ten years. However, due to the rapid economic growth rate of Chongqing, its capital in-
vestment in forestry is maintaining a rapid growth trend, so it can still increase carbon 
sinks on the basis of the optimal frontier under the premise of continuous high invest-
ment. 

For the three provinces of Tianjin, Anhui, and Qinghai, the forecast data show that 
the input indicators of one or two of them show a significant downward trend, for exam-
ple, in 2030, Tianjin and Anhui decrease their personnel and capital investment, and Qing-
hai province decreases its afforestation area and capital investment. With most of the in-
dicators decreasing, the low growth rate of carbon sinks can still be guaranteed under the 
current efficiency; this indicates that the current combined efficiency is actually much 
lower than the actual technical level that the two provinces can achieve, and the predicted 
carbon sink growth rate is at a lower level nationwide due to the too-low combined effi-
ciency assumption. Therefore, this requires the optimal reallocation of resources through 
slack variables for each input indicator according to the technically effective production 
frontier at the current technological level, in order to seek a higher integrated efficiency 
and thus strive for a new high rate of carbon sink increment in 2030. 

The predicted values of land input in five provinces of Hebei, Henan, Shaanxi, 
Shanxi, and Ningxia all show a decreasing trend, while labor and capital input are both 
on an increasing trend. Under the existing technology level, the decrease in land input 
and the appropriate increase in forestry personnel as well as capital can ensure that the 
carbon sink shows an increasing trend, which indicates that in these areas, the existing 
forest management level is low and the forest accumulation per unit area is not high. 
Therefore, if we can pay attention to the forest management level and improve the forest 
quality at this stage, the comprehensive efficiency of forest carbon sink can be greatly im-
proved with the existing land investment. Under the premise of the higher comprehensive 
efficiency of forest carbon sink, if the existing afforestation area can be guaranteed, there 
will definitely be higher increment of carbon sink. 

For provinces with increased efficiency, the study of their carbon sink increment re-
quires changing the efficiency and studying the carbon sink increment under the perspec-
tive of efficiency change, which is not the focus of this paper; this will be considered in a 
subsequent study. 

In summary, based on the inverse DEA model, the incremental amount of forest car-
bon sink is estimated on the basis of the prediction of input indicators, and the measure-
ment of its incremental space is of practical significance for the study of the optimal re-
source allocation of forest carbon sink. In terms of capital input, there is more redundancy 
than with other input indicators, and the government should reasonably arrange the allo-
cation of funds and channel various funds into the aspects that need to be developed. All 
regions have unreasonable input on indicators, and it is more important to increase the 
introduction of basic forestry staff and high-quality forestry talents to improve the science 
and professionalism of forestry development. The inverse DEA model can theoretically 
provide optimal input and output, and the increase or decrease amount of each indicator 
can be used as a reference. 

5. Conclusions and Policy Implications 
In this paper, through the construction of an evaluation indicator system of China’s 

forest carbon sink efficiency, DEA was used to portray China’s forest carbon sink effi-
ciency, and a gray prediction model was used to estimate the change in the input indicator 
when China reaches peak carbon; finally, the inverse DEA model was used to study the 
increment of forest carbon sink in each province of China, draw conclusions, and give 
policy suggestions. 

5.1. Research Findings 
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Referring to relevant research at home and abroad, this paper selects the index for 
evaluating China’s forest carbon sink efficiency, empirically analyzes the specific situation 
in this author’s country, and then estimates the change in input index through the gray 
prediction model. Finally, this paper introduced the inverse DEA model into the forest 
carbon sink and solved the two problems raised at the beginning of the article, that is, the 
efficiency of the new production possibility set is lower than the old production possibility 
set, and the carbon sink will increase immediately. China’s current forest resources tech-
nology is relatively mature, and forestry development has reached a bottleneck. The effi-
ciency level is basically stable, so it is of practical significance to quantitatively analyze the 
inverse DEA model under the condition of constant efficiency, and two research conclu-
sions are obtained. 

(1) Based on Theorem 1, two production possibility sets are constructed with constant 
inputs and outputs, and the efficiency comparison is given according to the CCR model; 
Table 4 shows that 12 provinces have increased efficiency and 15 provinces have de-
creased efficiency. The decrease in efficiency means that the output indicator forest carbon 
sink will increase if the original efficiency is kept constant at the new input level. From 
the overall level, if the efficiency is not high, then the optimization of resource allocation 
is able to achieve the purpose of increasing carbon sinks by maintaining the current tech-
nology level. The provinces with lower efficiency can be broadly divided into two catego-
ries: rich in resources but they have not been fully exploited, and it is necessary to 
strengthen the development and utilization of resources or insufficient resources such that 
they can only improve the carbon sink increment by optimizing their own resource struc-
tures and giving full play to the advantages of the provinces and the characteristics of 
high technicians. 

(2) Based on the characteristics of the inverse DEA model, the incremental carbon 
sink of each place is explored under the condition of constant efficiency, and the results 
match the actual ones to some extent. China is a vast country with different forest condi-
tions in each province, but in general, the carbon sink increment is closely related to the 
current development. The conditions of forest carbon sink increase in 15 provinces are 
obtained. The optimal allocation of output indicator is calculated based on the inverse 
data envelopment analysis model. The largest increase in forestry carbon sink is 169,362 
megatons in Guangdong, and the smalles is 619 megatons in Tianjin. From Table 5, we 
can see that areas with large forest scale and high coverage, such as Guangdong Province, 
are vigorously developing social economy, and most of the original forests have been ex-
ploited, but the lack of scientific and reasonable management leads to low productivity. 
Because of Guangdong’s superior natural conditions and development potential, there are 
still more unexploited forest resources, so if we can increase the afforestation area, then 
we can considerably increase carbon sinks. If we can increase the area of afforestation, we 
can increase the amount of carbon sink. In less developed areas, such as Qinghai and 
Gansu, the capital input and land input are lower, which requires more personnel input 
based on their existing forests to improve the carbon sink output per unit of forest area, 
thus improving the carbon sink efficiency. In areas with small forest size, the forest accu-
mulation is small, the coverage is low, and the carbon sink itself is small, such as Shanghai, 
where the labor input and land input do not change much; in such places, it is necessary 
to increase the capital investment based on the regional advantages, and apply high tech-
nology in the field of forest carbon sink, so as to achieve the purpose of improving the 
carbon sink. 
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5.2. Policy Recommendations 
China’s forest carbon sink efficiency still has more room for improvement: The de-

velopment of each region is unbalanced and uncoordinated, while the waste of resources 
is more serious, which requires a better allocation of resources. Based on the findings of 
this paper, corresponding policy suggestions is given for different regions. 

(1) For areas with insufficient forest resources in China, it is necessary to introduce 
high technology into forestry development and build a modern forestry development sys-
tem. It is necessary to plan forestry development with innovative ideas, emphasize tech-
nological advantages, and take the road of modern forestry development with high effi-
ciency. Strengthen the high-tech transformation of traditional forestry industry, 
strengthen high-tech technology supporting integration, improve the quality of forestry 
industry, and promote the quality and efficiency of forestry construction. Economically 
developed regions should vigorously promote the integration of high-tech and forestry 
industries, in order to improve the ability of independent scientific and technological in-
novation in forestry, accelerate the transformation of results, and further promote the ef-
ficient development of forestry. The economically backward regions should strengthen 
the connection with the high-tech sector, while government departments should establish 
incentive mechanisms; strengthen talent training and team structure; and increase the pro-
portions of innovative, practical, professional, and technical talents in the forestry back-
bone team, so as to improve the overall level of forestry development under the existing 
conditions. 

(2) For China’s forest resource-rich areas, traditional forestry development has 
reached a bottleneck, capital investment and land input have reached a high level, if the 
blind increase in capital and land input does not make the output level qualitatively im-
proved but will make the allocation of resources out of proportion. Therefore, we must 
base on our own resource advantages and fully develop the value of existing forests. We 
should increase the introduction of basic forestry staff and high-quality forestry talents to 
improve the science and professionalism of forestry development. 

(3) All places should continue to strengthen the protection of forestry ecology, imple-
ment accountability systems for damaging forestry ecological environment and security, 
and increase the punishment for malicious damage to forestry ecology. The government 
and forestry departments at all levels should take into account the local forestry situation, 
formulate guidelines with scientific and targeted approaches, make reasonable allocation 
of resources according to local conditions, and form a forestry development system with 
local characteristics. Finally, the structure of resource input indicators can be adjusted ac-
cording to the efficiency evaluation results as well as the inverse DEA results, so that for-
estry departments at all levels can work together to optimize the allocation of resources 
and achieve the maximum utilization value under limited resources. 
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